An introduction to cell biology, cancer, cell cycle, and mitosis

Dr. Lynne Cassimeris, Ph.D.
Biological Sciences
Lehigh University

Cells Replicate & Repair Themselves

- Bone marrow stem cells
- >1,000,000 divisions/min
- Skin stem cells
- Intestinal stem cells
- Muscle satellite cells
- Liver cells

Cells Work Together

250X

Skin as an example of cells within a tissue

Figure 22-10a Molecular Biology of the Cell 6e (© Garland Science 2015)

Normal Skin

Types of Skin Cancer

Squamous

Basal Cell

Melanoma

https://www.health.harvard.edu/cancer/save-your-skin-from-cancer

A healthy landscape

A simple homeostatic circuit

Cells constantly communicate with each other about how things are going

Essential Cell Biology. Garland Press

from all the signals in their environment: cells proliferate, specialize, interact, move, and sometimes they die

Normal, healthy cell turnover in skin tissue

individual keratinocytes last for about a month and must be replaced

Healthy vs. Disease Landscapes

Healthy State

Pathological State

example: inflammation

Signals and responses to infection

Inflammation and repair at the wound

mechanical and chemical signals

Some cells proliferate, others migrate,

eventually heal without a scar

Inflammation

Healthy State

Pathological State

Healthy State

Pathological State

Severe Disease

Cancer

Gene mutations

Normal Skin

Skin Cancer

Figure 22-10a Molecular Biology of the Cell 6e (© Garland Science 2015)

Squamous

Basal Cell

Melanoma

Figure 20-1 Molecular Biology of the Cell 6e (© Garland Science 2015)

yellow: metastasis

Cancer cells defined by:

reproduce without, or in defiance of, normal signals

invade and colonize areas reserved for other cells

Figure 20-9 Molecular Biology of the Cell 6e (© Garland Science 2015)

Multiple mutations are required to overwhelm normal controls and drive cancer progression

Cancer cells evolve through a series of mutations

hyperplasia: increased cell numbers

dysplasia:
abnormal looking
cells (may not be
cancerous)

© 2014 Terese Winslow LLC U.S. Govt. has certain rights

Cancers can be defined by tissue of origin...

Figure 20-2 Molecular Biology of the Cell 6e (© Garland Science 2015)

carcinomas: epithelial cells sarcomas: connective or muscle leukemias and lymphomas: blood cells

....or by the driver mutations and the pathways they disrupt

Figure 2. Intracellular Signaling Networks Regulate the Operations of the Cancer Cell

Hallmarks of Cancer: The Next Generation

Douglas Hanahan^{1,2,*} and Robert A. Weinberg^{3,*}

The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne CH-1015, Switzerland The Department of Biochemistry & Biophysics, UCSF, San Francisco, CA 94158, USA

*Whitehead Institute for Biomedical Research, Ludwig/MIT Center for Molecular Oncology, and MIT Department of Biology, Cambridge, MA 02142, USA

*Correspondence: dh@epfl.ch (D.H.), weinberg@wi.mit.edu (R.A.W.) DOI 10.1016/j.cell.2011.02.013

Glioblastoma

Mutations in 3 circuits commonly hit (~75%)

Broadly, these control:

Cell Growth

Cell Division

Responses to Stress and DNA Damage

Figure 2. Intracellular Signaling Networks Regulate the Operations of the Cancer Cell

Cells multiply (proliferate) by dividing

Two views of the cell division cycle

Figure 17-61 Molecular Biology of the Cell 6e (© Garland Science 2015)

A common pathway triggering entry into the cell cycle

and proteins frequently mutated in cancer cells

The actual cell division stage: mitosis and cytokinesis

Figure 17-3. Molecular Biology of the Cell, 4th Edition.

Some of the most successful chemotherapies target mitosis

A Brief History of Taxol as a Chemotherapy

Susan Horwitz. Reflections on my life with Taxol. Cell. 177: 502-505.

Mitosis Overview

spindle structure

Microtubules are dynamic protein polymers

Taxol blocks microtubule disassembly

Unique mode of action (at the time) led to highly successful clinical trials

+ Taxol

Stuck in Mitosis: Activates Cell Death Pathway

Taxol and other chemotherapies come with major side effects

Cancer Cells

Newer approaches

*combat side effects

*new therapies that target only cancer cells

Avoid death of normal cells: Target something novel in cancer cells

chronic myeloid leukemia

Figure 20-5 Molecular Biology of the Cell 6e (© Garland Science 2015)

Gleevec (drug) blocks Bcr-Abl fusion protein

Ras pathway is target for many inhibitors

Figure 20-44 Molecular Biology of the Cell 6e (© Garland Science 2015)

Cancer cells protect themselves from detection by our immune system

Newer area for treatment unmask cancer cells so immune system can attack

Mutations needed for metastasis are poorly understood

Figure 20-31 Molecular Biology of the Cell 6e (© Garland Science 2015)

predict these pathways necessary

Key points

Cells maintain a healthy state by constantly monitoring themselves and their environment

Mutations to the sensors and effectors drive cancer progression

Hallmarks of Cancer: The Next Generation

Douglais Harahan ^{1,4} and Robert A. Weitberg^{1,4} The Sens Institute of Equatement Cancer Research (MPEC), School of Life Sciences, (EPI), Lausanne CH-1016, Sieberjand The Department of Secondensity & Englysias, UCSF, Sen Francisco, CA 94156, USA. Whiteholds Desirbit to Secondensity & Sension (Lausan), Lausanigh Contract Scholars Oncology, and MT Department of Bology, Centers MA 02142, USA. "Correspondence different Child, wentergiften mit ads. (FA.W.)