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Houston Methodist

• Established in 1919. 8 hospitals across Houston. 
Academically affiliated with Cornell and Texas A&M.

• HMH is the flagship hospital located in Texas Medical 
Center, the largest medical center in the world with 54 
hospitals and biomedical institutions.

• Ranks #1 hospital in Texas and one of the top 
hospitals in the nation by US News and World Reports.

Downtown Houston 

Texas Medical Center

Houston Methodist Hospital

Houston Methodist Hospital 
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Convergency Research in 
Disease Problems

• Disease involves multiple scale of biology.

• It entails integrating knowledge, 
methods, and expertise from different 
disciplines and forming novel frameworks 
to catalyze scientific discovery and 
medical innovation.
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Convergency Research 
Program in Wong Lab

Drug Repositioning and Biomarker Discovery

Immuno-Tumor Microenvironment, Brain 
Microenvironment, Crosstalk, Metastases 

Stubbins R, et. al, JCO Clin. Cancer Informatics, Dec 2018; Perez JA, et. 
al, Academic Medicine, March 2018; Alvarez PA, et. al, Cardiovasc
Ther. Jun 2017; Islam AK, et. al, Clinical Transplant. Aug 2017; Weng
S, et. al, J Biomed Opt. Oct 2017; Puppala M, et. al, IEEE Trans Biomed 
Eng., Dec 2015; Andreu-Perez J, et. al. IEEE J Biomed Health Informat. 
Jul 2015.

Yeung TL, et. al, J NCI, March 2019; Huang L, et. al, Bioinformatics, 
Feb 2019; Huang L, et. al, Sci Trans Med., Oct 2018; Ren D, et. al, 
Cancer Research, April 2018; Choi DS, et. al, Stem Cells, Sept 2014, 
Jin G, et. al, Drug Discov Today, May 2014; Zhao H, et. al, Cancer 
Research, Oct 2013; Jin G, et. al, Cancer Research Jan 2012.

Bu W, et. al, Cancer Research, Jan 2019; Leung CS, et. al, J Clin
Invest., Feb 2018; Markowitz GJ, et. al, JCI Insight, July 2018; Hu Q, 
et. al, Clin. Cancer Research, Sept 2017; Zhao Z, et. al, Cancer 
Research, April 2016; Fischer KR, et. al, Nature, Nov 2015; Wang H, 
et. al, Cancer Cell, Feb 2015; Choi H, et. al, Cell Reports, Feb 2015. 

AI in Disease Management

Digital Medicine

He T, et. al, JCO Clin. Cancer Informatics, May 2019; Bradley D, et. al, 
Diabetes Care, Mar 2019; Wong KK, et. al, Cancers, Jan 2019; Patel 
TA et al, Cancer, Jan 2017; Sheng J et. al, IEEE J Biomed Health 
Informat. Jul 2015.

tumor cells
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Shape As Biomarker: 
Melanoma 

• High content RNAi screening of 3 millions Drosophila 
Kc167 cells; dsRNAs targeting ~300 kinase and 
phosphatases; 3 channels/image, 16 images/well, 
384 wells/plate, triplicates for each plate.

• Kc167 cell populations are dominated by five discrete 
phenotypes;

• Pheno-clusters defined amongst kinases and 
phosphatases show functional significance;

• Certain RNAi treatments increase morphological 
complexity by inducing intermediate phenotypes;

• PTEN deficiency leads to switch-like transitions 
between two morphologies;

Yin et al., BMC Bioinformatics, 9:264;
Yin et al., Pattern Recognition, 42(4): 509-522;
Yin et al., Nature Cell Biology, 15: 860-871;
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Switch-like Regulation of 
Morphology is Necessary during 
the Metastasis of Melanoma 

• A subset of genes centering 
tumor suppressor PTEN serve 
as highly conserved regulators 
of cell shape in fly cells as well 
as mouse and human 
melanoma cells

• Genes control cell shape 
behave more like light 
switches than teakettles 
coming to slow boil

Effect of PTEN deficiency in cultured fly cells (up) 
and xenograft human melanoma cells in mouse (down)
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A Model for Morphological 
Landscape

• Typical morphological 
phenotypes are conserved 
across cell types and species.

• Our morphological landscape 
models the shape space 
explored by cells under various 
RNAi treatments.

• Features like cell-cell 
adhesions can alter cell 
population’s ability of exploring 
shape space.

Yin et al., Bioessays, 36: 1195-1203
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Great, But…

If only we had matching imaging and multiple-omics profiles for each RNAi

Yin et al., Nature Cell Biology, 15: 860-871



9

Use Gene Function Data To 
Stratify Phenoclusters

Yin et al., Nature Cell Biology, 15: 860-871

• A subset of genes centering tumor suppressor PTEN… 
• They may induce similar phenotypes, but are they working the same 

mechanism?
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Converging Image, Proteomics and 
Genetics Data across 11 Mouse 
Melanoma Cell Lines

• 3 cell lines with BRAF Kinase Activated
• 6 with NRAS GTPase Activated
• 2 with NRAS GTPase Activated and BRAF Kinase Dead

• Abundance of 4,800 proteins
• Intensity of 16,848 phosphorylation events
• 166 imaging features 

Rich dataset to build a multi-scale causality network!
Every causality pair counts
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Morphological Phenotype as 
Drug Targets

Shape features can serve as prognostic markers and drug targets

Multi-omic
Networks

ANOVA

Event-KP 
correlation

Shape-event 
correlation

BLANK
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Converge Pharmacogenomics With 
HCS for Alzheimer's Drug Repositioning

• We hypothesize that modeling of large 
pharmacogenomic data with large drug screening 
data may identify new drug hits and delineate novel 
disease mechanism of Alzheimer's.

• So far we have accomplished the following:
– Obtained 38 primary hits from high content screening 2,640 

selected known drugs and bioactive compounds that strongly 
inhibit b-amyloid-driven p-tau accumulation and validate 
those 38 hits in separate assays.

– Used 38 hits as a base to predict and validate novel drug 
candidates for Alzheimer’s Disease using NIH LINCS 
database.

– Gain insights of disease mechanisms from identified drug 
candidates to improve the success rate of predicted drug hits.
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Systematic Drug Repositioning

CLUE.IO data 
warehouse

Transcriptomic 
profiles for

20,413 compounds
~20 cell lines

22 of 38 known 
hits from 
Clue.IO data

Hit Predictions

In vitro 
Validations

Mechanism 
Studies

Expand list of 
known hits

Updated 
signatures for 
screening hits

Identify drug 
candidates 
with similar 
transcriptomic 
profiles as 
known hits

3D cell drug 
screening 

(3DDS)

Deep learning 
based hit call
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3D Cell Drug Screening

Matrigel with embedded FAD 
neural stem cells

Choi SE et al., Nature, 2014

Library of 
2640 

compounds
Sigma-Aldrich LOPAC

Tocriscreen library
240 kinase inhibitors

Fluorescent microscopy imaging for pTau
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Deep Learning Hit Call

Inhibitor of 
Ab42 fibril 
formation

Potent, 
selective 
GSK-3 
inhibitor

1. Positive/negative controls and observed 
top hits used as training set 2. Generate balanced training sets

+ve
control

+ve
control

-ve
control

3. Deep Learning 
training for hit call

4. Results
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38 Primary Hits

Transcriptomic signatures regarding 
the cellular perturbation caused by 
22 of the 38 hits are included in the 
Clue.IO data warehouse

BLANK
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Independent Confirmation 
of 33 Primary Hits

• Selected 33 drug 
compounds (5 others are 
too toxic or unavailable) 
on Ab and p-tau levels 
were analyzed by HT 
electrochemiluminescence
/multi-array technology.

• Analysis of 33 primary hits 
for their effects on soluble 
(media) and insoluble (5M 
GuHCl) Ab and phospho-
tau (pSer181) levels.

• DMSO controls, black bar.  

33 primary hits reduce p-tau /total-tau ratio

A few hits reduce Aβ level at the same time  

Unpublished Data from Tanzi and Kim labs, MGH

Validation of 33 hits using 3DDS assay
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From Hits to More Hits

Compound digest 
APP

Set threshold as 
score_best4 >90

22 hits have 
eligible data 
in CLUE.io

LINCS

Excluding 176 
screened cmpds
(already in 2,640 

cmpd libraries )

646 LINCS 
Compounds

Categorization：
1. Approved drugs (70)

2. Clinical trials drugs 
(57)

3. Investigational 
compounds (163) 

4. BRD-Series(180)

470 
unscreened 
Compounds
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Pharmacology Analysis Selects 
56 Candidates for Validation

470 unscreened 
compounds

Select Approved Drugs (70) and clinical trials drugs (57) 
as repositioning candidates

127 Repositioning 
candidates:

70 approved drugs 
+ 57 drugs in 
clinical trials

Pharmacological Filtering Criteria: 
1. Toxicity: Exclude drugs requiring 

HSC review  (GHS Cat. 1)
2. Systemic effect: Exclude non-

systemic use drugs 
3. Commercial availability: Exclude 

commercially unavailable drugs

56 Potential drug candidates 
for screening:

27 approved drugs
29 drugs in clinical trials
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27 Approved Drugs 
Predicted From Primary 38
• Original primary hits (blue).
• 5 validated predictions (green) with comparable effects to original top 3 hits 

(almost complete inhibition)
• 5 partial hits (yellow),  2 statin family drugs increased p-tau level (red)
• >160-fold improvement on hit rate (5/27 vs. 3/2,640, primary screening)

BLANK



Network as a Biomarker

Northcott P et al, JCO, 2010; Cho YJ et al , JCO, 2010; Taylor M et al, Acta Neuropathologica, 2012

Medulloblastoma is the most common malignant brain tumor of childhood.



A Systems Biology-driven 
Drug Discovery Framework

DSNI-DFN

① Driver signaling networks 
identification (DSNI)  

② Construction of drug Functional 
network with potential mechanisms of 

action

③Mapping targets of drug functional 
network to driver disease networks

Based on Driver Signaling Network Identification (DSNI) and Drug Functional 
Network (DFN) Modeling

L Huang et al Science Tran Med, Oct 2018 



Driver Signaling Network 
Identification (DSNI) 

Pathway DBs: 
KEGG and NCI

Subtype-specific 
disease 

driver Networks

DNA-seq: 
mutated 
genes

RNA-seq
profiling

Methylation 
profiling

CNV: amplified genes

seedNetwork 
exploring

Predict patients 
outcome
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Kaplan-Meier-esimate for 
two survival populations

We analyzed multi-omics data (mRNA 
expression, DNA-copy number, DNA-
methylation and DNA-seq profiles) of 
>1,800 patients with Group 3/4 MBs 



Construct Drug Functional Network 
With Potential Mechanisms Of Action

Disease subtype-specific 
driver network

Combination and 
clustering

L Huang et al Bioinformatics, Feb 2019



Network As A Biomarker 

A
up

down

up

down

GSEA

GSEA

A

Driver Network 
signatures of a disease 

Driver Network 
signatures of a drug 

Drug-disease connectivity 
score

A

𝑇𝐸 =*
BCD

E
𝑇B 𝐸𝑆 A, 𝐵

𝑇B represents the targeting 
effects of drug B on the ith
network

A Disease type

Drug

Driver signaling 
networks



Candidate Drugs Identified for 
Groups 3 and 4 MB

Multi-omics analysis

Drug Screening Validation

Huang L, et  al. Science Tran Medicine, Oct, 2018

Apply DISNEEvaluate 1,300 known drugs to find top ranking 
drug candidates for Group 3/4 MBs. 



Successful Treatment in Orthotopic 
PDOX Model of Group 3/4 MBs

Digoxin Digoxin

MB group 3 & 4 Mouse Models 
took Digoxin survived longer 
significantly 



Comparison of The Effects of 
Digoxin and Ionizing Radiation

Drug B

Drug B Drug B

XRT vs control, p=0.0108
Drug B vs control, p<0.001Group 3 model of MB

Huang L, et  al. Science Tran Medicine, Oct, 2018



Comparison of The Effects of 
Digoxin and Ionizing Radiation
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A 
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Control
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Group 3 model of MB

Prolonged digoxin showed a statistically significant prolongation of survival (235 vs 
167 days, log rank p<0.01) 



Receptor-mediated crosstalk Exosome-mediated crosstalk

Two major categories of cell-cell communications in tumor 
microenvironment

Crosstalk as Biomarker



Myeloid cells infiltrate human and mouse NSCLC

Identify stroma-tumor crosstalk 
using multi-cellular data

Identify Altered Pathways in the Stromal-
Epithelial Environment that Drive Lung 
Carcinogenesis & Mediate Chemoresistance



Differentially 
Expressed Ligands 

Expressed 
Transcription 

Factors/Differentially 
Expressed Target 

genes

Tumor cells
(Autocrine)

Tumor 
cells

Expressed 
Receptor

Stromal cells
(Paracrine)

or

Ligand-Receptor interactions downstream 
signaling pathways           

Activated signaling 
branches
(p<0.05)

𝑉J 𝑉K

𝑉B

𝑉L
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e 1 Distance 

2

Distance 
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Distance Matrix

G(V,E): signaling pathway
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(p = 1.78E-07)
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Receptor-mediated 
Stromal-tumor Interaction

TNF

CCL7

TGFB1

TNF

IL6

Wnt

Macrophages

Ligand

Receptor

Signaling protein

Transcription Factor

Paracrin
e
Autocrine

Neutrophils 

Myeloid Monocytic
Cells

TNFRSF1B

CCR1

Wnt

TGFBR
1

HBEGF

EGFR

IL6R

FZD7

Non-small cell 
lung cancer

• Common pathways: MAPK, PI3K-Akt, NF-kappa B, ErbB, Ras, TGF-, and TNF 
• Unique pathways: HIF-1(MMC&Macrophage), Wnt(Macrophase&tumor), 

Hippo(Neu&Macrophage&tumor), FoxO(Neu&tumor)
• Novel paracrine crosstalk: IL6-IL6R, WNT11-FZD7
• Validation: IL6-IL6R-Stat3

CD4

CD8

Choi, et al, Cell Report, 2015



CCCExplorer



Systematic Identification Of Druggable
Epithelial–stromal Crosstalk Signaling 
Networks In Ovarian Cancer

Unsupervised clustering of Cancer Associated Fibroblast(CAFs) and bone 
marrow Mesenchymal Stem Cells (MSCs) identified two major CAF subtypes

Number of 
clusters

Average 
silhouette score 

k means

Average 
silhouette score 

hierarchical

3 0.520779 0.506461
4 0.44033 0.459211
5 0.212553 0.327744
6 0.288765 0.303304
7 0.253932 0.248601
8 0.271511 0.231292
9 0.276265 0.213131

10 0.257753 0.21664

A) B) C)

Yueng TL, Sheng J, et al. JNCI, Oct 



Tumor-CAF Crosstalk

Activated signaling pathways in 
CAF-C were predicted through 
overexpressed secretory ligands
in cancer cells and activated 
transcription factors in CAFs in 
the CAF-C patient cohort.

Activated signaling pathways in 
CAF-C were predicted through 
the identification of 
overexpressed receptors and 
activated transcription factors in 
CAFs in the CAF-C patient 
cohort

Yeung, et al, JNCI, 2018



Targeting Crosstalk

Identification of a 
prescription drug, calcitriol, 
that target activated Smad
signaling in cancer-
associated fibroblasts 
(CAFs). 

Yeung, et al, JNCI, 2018



Exosomes Represent a Rich 
Source of Biomarkers

• Stable at -20oC for 5 years, 
largely unaffected after 2 
weeks at 4oC and resistant to 
freeze-thaw cycles.

• Investigate exosomal miRNAs 
as well as other exosomal
small RNAs such as non-
coding RNAs (tRNAs, rRNAs, 
lincRNAs, piRNAs, snoRNAs) 
as potential new biomarkers.

Advantages of Using Exosomal
Small RNA-Based Biomarkers 
for Cancer Detection



(a) (b)

(c)

Exosomal transfer of miR21 derived from cancer associated fibroblasts 
(CAF) and cancer associated adipocytes (CAA) confers paclitaxel 
resistance in ovarian cancer cells through targeting APAF1.

Exosome-mediated 
Stromal-tumor Interaction

Chi Lam Au Yeung, et, al. Nat Commun. 2016



Exosomal Crosstalk

E2F4TFDP2
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CCND3 CDK4
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Signaling	nodes	
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Crosstalk analysis identified two ovarian cancer pathways that are altered by 
5 up-regulated exosomal miRNAs from CAF Software: CCCExplorer



Identify Differentially Expressed 
Exosomal Small RNAs

C
on

tr
ol

Differentially expressed exosomal miRNAs Top 6 up-regulated exsomal miRNAs
Cancer vs. Control



Inter-cellular Communication at 
Primary and Metastatic Sites

Yeung et al., Am J Physiol Cell Physiol, 2015



Discovery of Cancer Drug 
Targets Crosstalk



MFAP5 is a Novel Target for Cancer 
Treatment 

Leung et al., Nat Commun., 2014; Leung et al., J Clin Invest., 2018 

Leung et al., J Clin Invest., 2018, Leung et al., Clin Cancer Research, 2019



Reduce 
Tumor Size 

Enhance Drug 
Uptake in Tumor 

Tissue

Reduce 
Tumor Size

MFAP5-targeting Monoclonal 
Antibody In Cancer Treatment 



Humanized Monoclone
Antibody Targeting MFAP5

Ovarian Cancer

Pancreatic Cancer

Patent pending



47

SMAB Colleagues:
Zheng Yin, PhD, Jianting Sheng, PhD; Xuping Li, PhD; Lin 
Wang, PhD; Xin Wang, MSc; Yunjie He, MSc; Hong Zhao, 
PhD; Xiang Nan, MSc; Mamta Puppala, MSc; Tian Cheng 
He, PhD; Chika Ezeana, MD; Rebecca Danforth, PhD; 
Xiaohui Xu, MS; Shenyi Chen, PhD, Dongbing Gao, MSc.

SMAB Alumni:
Fuhai Li, PhD (Univ Washington St Louis); Lei Huang, PhD 
(Cincinnati Children's); Guangxu Jin, PhD (Wake Forest), 
PhD; Kelly Somelar, MSc (Univ. Tartu, Estonia); James 
Mancuso, PhD (MD Anderson Cancer Center); Xiaobo 
Zhou, PhD (UT Health); Jared Gilliam, PhD (MD Anderson 
Cancer Center); Ming Zhan, PhD (NIMH); Zheng Xia, PhD 
(Oregon Health & Sci U); Joshua Chakranarayan, MD 
(Baylor College of Medicine); Jing Fan, PhD (Humana); Bo 
Geng, PhD (Aalborg University, Denmark); Zhuhong You, 
PhD (Chinese Academy of Sciences); Xiaofeng Xia, PhD 
(ATGC, Inc, Philadelphia); Xiaoyun Xu, PhD (Lonza Group, 
AG); Kong Ren, PhD (Jiangsu Polytech, China); Yaping Yu, 
MD, PhD (Xiangya School of Medicine, China); Min Deng, 
MD, PhD (Sun Yat-sen University, China); Xuemei Yuan, 
MSc (Sorbonne U, France)

ACKNOWLEDGEMENTS

Collaborators:
• Norbert Perrimon, PhD, Harvard Medical School
• Rudi Tanzi, PhD; Doo Yoon Kim, PhD, Mass General 

Hospital, Harvard Medical School
• Chris Bakal, PhD, Heba Sailem, PhD, Institute of 

Cancer Research, London, U.K.
• Ching Lau, MD, PhD, Jackson Lab and Connecticut 

Children's Medical Center
• Xian-nan Li, MD, PhD, Northwestern University
• Sarah Injah, MD, PhD,  Patricia Baxter, MD, Texas 

Children Hospital, Baylor College of Medicine
• Vivek Mittel, PhD, Weil Cornell Medicine, NY
• Sam Mok, PhD, Sammy Ferri-Borgogno, PhD, Univ of 

Texas MD Anderson Cancer Center
• Swaminathan Iyer, MD, Jing Yang, PhD, Jin He, PhD, 

Huan Liu, PhD, U Texas MD Anderson Cancer Center

Funding support:
R01AG057635, R01AG028928, R01AG057635, 
R01CA121225, R01LM08696, R01ES024165, 
U54CA149196, U01CA188388, CPRIT RP101334, 
Tsing Tsung and Wei Fong Chao Foundation, John S 
Dunn Research Foundation, Cure Alzheimer’s Fund, 
Gillson Longenbaugh Foundation, Huffington 
Foundation, Johnsson Estate Endowment




