Why Bioethics?

Ann Fink, Ph.D.

BioS 10/ BioS 90: Bioscience in the 21st Century

Weds 8/28/2019
Why Bioethics?

What is Bioethics?
We can ask scientific AND ethical questions about biology.

What do these questions look like?

For example:

• What is a scientific question about genetics?
• What is an ethical question?
Some basic terms

• **“Morality”**: Questions about what is “right” and “wrong”

• **“Ethics”**: How do we *decide* what is “right” and what is “wrong”

How do we evaluate our knowledge about the world around us?

• **Metaphysics**: (the study of “what is”)

• **Epistemology**: how knowledge is created and organized
Ethics: What “ought” to be? How do we decide?

Many different types of questions:

Research ethics: How is scientific knowledge created? Who creates it? What methods are used to obtain that knowledge?

Use of scientific knowledge: Technology resulting from scientific knowledge? Development of medical treatments / drugs? Scientific basis for policy? Who benefits from science?
Some primary *Western* theories of ethics:

- **“Virtue ethics”** – Aristotle
- **Deontological ethics** – Kant
 - Duty-based
 - Humanity (reason, free will, autonomy)
 - Universalisability
- **Consequentialism**
 - Utilitarianism – Mill, (Greatest happiness for the greatest number)

** (What aspects of moral reasoning might be common across cultures? What aspects might vary?)
Beauchamp and Childress: 4 Principles
Principles of Biomedical Ethics, 1985

- Non-maleficence
- Beneficence
- Respect for Autonomy
- Justice
Beauchamp and Childress: 4 Principles
Principles of Biomedical Ethics, 1985

• **Non-maleficence** – “First, do no harm” (like the Hippocratic oath)
• **Beneficence**
• **Respect for Autonomy**
• **Justice**
Beauchamp and Childress: 4 Principles
Principles of Biomedical Ethics, 1985

- **Non-maleficence** – “First, do no harm” (like the Hippocratic oath)
- **Beneficence** – Do as much good as possible (act with others’ interests in mind).
- **Respect for Autonomy**
- **Justice**
Beauchamp and Childress: 4 Principles
Principles of Biomedical Ethics, 1985

- **Non-maleficence** – “First, do no harm” (like the Hippocratic oath)
- **Beneficence** – Do as much good as possible (act with others’ interests in mind).
- **Respect for Autonomy** – Respect for the rights of individuals to make free decisions
- **Justice**
Beauchamp and Childress: 4 Principles
Principles of Biomedical Ethics, 1985

- **Non-maleficence** – “First, do no harm” (like the Hippocratic oath)
- **Beneficence** – Do as much good as possible (act with others’ interests in mind).
- **Respect for Autonomy** – Respect for the rights of individuals to make free decisions
- **Justice** – Fairness and equity in research and medical applications.

Principles are both widely applied and continuously debated...
Deontology vs. consequentialism... the trolley problem.

(Small spoiler for “The Good Place” / brief depiction of violence)

https://www.youtube.com/watch?v=vflDyNV22LQM
The trolley / patient problem

• If you could save seven patients by killing one person and redistributing their organs, would you?

• Why?
Sneak preview: Neuroethics

How “ought” we to consider, research, and treat brains in health and illness?

How should we study??

Whose should we study??

Who should do the studying of??

How should we use the knowledge that we gain from brain research?
Neuroethics: some of the issues

Mental health and illness
- How should we define a “disorder” (e.g. addiction, anxiety, autism, schizophrenia)?
- Ethics of experimental and invasive treatments (e.g. deep-brain stimulation for Parkinson’s or depression)?

Socioeconomic variables and the brain:
- e.g. What duties arise from understanding how childhood adversity affects the brain?

Cognitive enhancer drugs?
- Should people be allowed to use these?
- In what situations?

Why do we care so much about these questions?
Ethics and Biology: asking bigger questions

Through the study of ethics, we continually evaluate our values, our science, and our responsibilities.

This allows us to understand relationships between people and the natural world in more complex ways.

Thank you!
BIOMEDICAL ETHICS

1. Organ Needs
2. Drug Pricing
3. Start-up Companies

Neal G. Simon, Ph.D.
Dept. of Biological Sciences
August 28, 2019
ORGAN PROCUREMENT AND TRANSPLANT NETWORK WAITLIST*

Dept. of Health and Human Services

<table>
<thead>
<tr>
<th>All Organs</th>
<th>Kidney</th>
<th>Liver</th>
<th>Pancreas</th>
<th>Kidney / Pancreas</th>
<th>Heart</th>
<th>Lung</th>
<th>Heart / Lung</th>
<th>Intestine</th>
<th>Abdominal Wall</th>
<th>Head & Neck: Craniofacial</th>
<th>GU: Uterus</th>
</tr>
</thead>
<tbody>
<tr>
<td>124,309</td>
<td>102941</td>
<td>13,289</td>
<td>853</td>
<td>1,711</td>
<td>3,776</td>
<td>1,449</td>
<td>44</td>
<td>226</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>

> 20 people die every day waiting for an organ transplant

*as of August 26, 2019
Organ Wait List: United States
August 27, 2019

All Organs 124,309
Kidney 102,941

Number of Transplants (2018)
All Organs 36,526
Kidney 21,167

Number of Donors (2018)
Total 17,568
Deceased 10,721

http://optn.transplant.hrsa.gov
Desperation & Cultural Prohibition

- Should people be allowed to sell their organs?

- What about cultural/religious prohibitions?

- National Policy: Opt-in or Opt-Out?

- UNOS decision rules
She Beat Cancer. Now, She’s in Another Fight for Her Life.
Twenty Americans die each day waiting for organs. Here’s how to change that.

- Erika Zak beat Stage IV metastatic colon cancer. She survived more than 70 rounds of chemotherapy
- She’s stayed alive more than two years despite liver failure after a botched surgery

Is Ms. Zak a candidate for a liver transplant?
Erika Zak Update

➢ The insurance company had repeatedly declined to cover the liver transplant that Ms. Zak’s doctors say she will die without.

➢ Last year it agreed to cover the cost after Ms. Zak made an impassioned plea, but....

➢ UNOS had refused to grant her an emergency exception that would significantly increase her chances of receiving the liver transplant.

You are on the 5 person UNOS Board, would you approve or not approve Ms. Zak? Why?
Liang Yaoyi, age 11, had a dying wish to donate his organs so others could live. He lost his battle with brain cancer on Friday. As his body was wheeled from the surgery room to harvest his organs, the medical team bowed to honor him and the lives he saved.
Genetically engineered piglets free of retroviral sequences may provide safer organs for human transplant (Niu et al. 2017 Science)

A partially recellularized human whole-heart cardiac scaffold, reseeded with human cardiac cells derived from induced pluripotent stem cells, being cultured in a bioreactor that delivers a nutrient solution and replicates some of the environmental conditions around a living heart (Guyette et al 2016)
the Price is Right
A rare, autosomal recessive neuromuscular disease characterized by degeneration of alpha motor neurons in the spinal cord, resulting in progressive proximal muscle weakness and paralysis.

Occurs in 1:6000 to 1:10,000 births

Caused by a defective or missing SMN1 gene. Infants with SMA lose the motor neurons responsible for muscle functions such as breathing, swallowing, speaking and walking.

SMA type 1 is the most common type of SMA and is also a severe form of the disease. Infants with SMA type 1 experience severe weakness before 6 months of age and never sit independently. Muscle weakness, lack of motor development and poor muscle tone are the major clinical manifestations. Intelligence is normal. Most affected children die before two years of age.

The onset of weakness in SMA type 2 patients is usually between 6 and 12 months. Affected children can sit independently early in development but are unable to walk even 10 feet independently. Those with SMA type 2 are usually not able to sit independently by the mid-teens or later.
ZOLGENSMA FOR SPINAL MUSCULAR ATROPHY
Vas Narasimhan, MD
CEO, Novartis

On the price of Zolgensma
...
Novartis was quick to point out that the price comes out to $425,000 per year for five years, which is also far less—50%—than the 10-year cost of current chronic SMA therapy.

On data manipulation and reporting
..... an AveXis scientist stepped up in mid-March to report the manipulated data, which the FDA said was submitted as part of Zolgensma's application for approval. The company launched an internal probe, and by early May had determined the scientist was correct. It didn't tell the FDA about the allegations, however, until June 28, more than a month after Zolgensma won its FDA green light.

On being CEO
..... explained the delay as a result of the company wanting to complete an internal investigation to determine what happened prior to notifying the agency. He said he’s committed to rebuilding trust.
“We moved quickly to conduct the relevant investigations and to be science-based and patient driven. In our approach, we determined that the potential data issue in question impacted a very small amount of data and did not impact the safety, efficacy or product quality of Zolgensma.”
START-UP COMPANIES
THERANOS

See Tyler Schultz on September 24
Thank you for your time and attention
Most Expensive Drugs: United States

<table>
<thead>
<tr>
<th>Drug</th>
<th>Cost (patient/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actimmune (Chronic Granulomatous Disease; slows severe, malignant osteopetrosis)*</td>
<td>$627,852/patient/year</td>
</tr>
<tr>
<td>H.P. Acthar Gel (Multiple Sclerosis)</td>
<td>$205,681/patient/year</td>
</tr>
<tr>
<td>Cinryze (Hereditary Angioedema)*</td>
<td>$230,826/patient/year</td>
</tr>
<tr>
<td>Kalydeco (Cystic Fibrosis)</td>
<td>$299,592/patient/year</td>
</tr>
<tr>
<td>Naglazyme (Maroteaux-Lamy Syndrome)*</td>
<td>$485,747/patient/year</td>
</tr>
<tr>
<td>**Soliris (paroxysmal nocturnal hemoglobinuria) ***</td>
<td>$536,629/patient /year</td>
</tr>
</tbody>
</table>

*orphan indication
In the News

- Martin Shkreli
 - CEO of Retrophin and Turing
 - Daraprim: toxoplasmosis
 - $13.50 to US$750 per pill overnight

- Michael Pearson
 - CEO of Valeant Pharmaceuticals
 - Nitropress: hypertension: 3-fold
 - Isuprel: bradycardia: 6-fold

- Heather Bresch
 - CEO of Mylan
 - EpiPen: 10-fold increase
Where are They Now

M. Shkreli: charged in securities fraud case, found guilty on multiple counts, not guilty on others. In jail

M. Pearson: “all we care about is shareholder value.”
 Price per share was $262 in August, 2015
 Current price: $30.30

H. Bresch: still CEO
 April 2017: class action suit for racketeering filed based on EpiPen pricing
Innovation & Entrepreneurship

H. Ott, 2013, Nature Medicine

M. Little, 2013, Nature Biology
Ethics of Access

1. Organ Transplants

2. Orphan Drugs
Transplants* per million people

Selected countries, 2013 or latest

<table>
<thead>
<tr>
<th>Country</th>
<th>Deceased donors</th>
<th>Living donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td>70.0</td>
<td></td>
</tr>
<tr>
<td>Norway</td>
<td>66.0</td>
<td>14.0</td>
</tr>
<tr>
<td>United States</td>
<td>59.0</td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>57.0</td>
<td></td>
</tr>
<tr>
<td>Britain</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>49.0</td>
<td></td>
</tr>
<tr>
<td>South Korea</td>
<td>47.0</td>
<td></td>
</tr>
<tr>
<td>Turkey</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>43.0</td>
<td></td>
</tr>
<tr>
<td>Australia</td>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td>37.0</td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>Germany</td>
<td>34.0</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>Iran</td>
<td>31.0</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>Saudi Arabia</td>
<td>28.0</td>
<td></td>
</tr>
<tr>
<td>Mexico</td>
<td>27.0</td>
<td></td>
</tr>
<tr>
<td>Japan</td>
<td>26.0</td>
<td></td>
</tr>
<tr>
<td>Cuba</td>
<td>21.0</td>
<td></td>
</tr>
<tr>
<td>Singapore</td>
<td>19.0</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>18.0</td>
<td></td>
</tr>
<tr>
<td>Thailand</td>
<td>14.0</td>
<td></td>
</tr>
<tr>
<td>South Africa</td>
<td>13.0</td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>12.0</td>
<td></td>
</tr>
<tr>
<td>India</td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Philippines</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Ukraine</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Indonesia</td>
<td>6.0</td>
<td></td>
</tr>
<tr>
<td>Malaysia</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

*Kidney and liver transplants, which comprised almost 90% of all transplants in 2012

Sources: Global Observatory on Donation & Transplantation; WHO; ONT

Economist.com/graphicdetail