Biomedical research has the goal of making us better

Biomedical research has the goal of making us better

To do this we need to better understand humankind biology

Outline

- Discuss the benefits of and how to choose a model system.
- Go through a case study of using a zebrafish model to understand how melanomas form

Use of animal model systems has exploded in the last 100 years

Reasons for using model systems:

Identify genes that are causative mutations for birth defects

Identify genes that are causative mutations for genetic diseases (CF, Diabetes, cancer, etc)

Understand the biology of critical molecular pathways

Build genetic models of a disease to screen for novel compounds that might alleviate problem

Screen molecules for potential therapeutic value

What is the right animal model system?

Justifying choice of model system

Overall Benefit to Humankind

Ethical cost + Monetary cost

Choosing a model system

1. is the animal's biology appropriate for the question

- 2. is there a better ethical choice for a model system
- 3. is the question being asked valuable enough to overcome the ethical and financial obstacles.

Penicillin is good - but we could have gotten it wrong

Alexander Fleming

TOXICITY OF PENICILLIN.

The toxicity to animals of powerfully antibacterial mould broth filtrates appears to be very low. Twenty c.c. injected intravenously into a rabbit were not more toxic than the same quantity of broth. Half a c.c. injected intraperitoneally into a mouse weighing about 20 gm. induced no toxic symptoms. Constant irrigation of large infected surfaces in man was not accompanied by any toxic symptoms, while irrigation of the human conjunctiva every hour for a day had no irritant effect.

Is penicillin toxic?

Had Penicillin been injected into guinea pigs, we probably would have been delayed in finding our first antibiotic.

Had Penicillin been injected into guinea pigs, we probably would have been delayed in finding our first antibiotic.

Had Penicillin been injected into guinea pigs, we probably would have been delayed in finding our first antibiotic.

Animal Models of Tuberculosis: Guinea Pigs

Simon Clark, Yper Hall, and Ann Williams

Microbiology Services, Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom *Correspondence:* ann.rawkins@phe.gov.uk

Choosing a model system

- 1. is the animal's biology appropriate for the question
- 2. is there a better ethical choice for a model system
- 3. is the question being asked valuable enough to overcome the ethical and financial obstacles.

Reasons for using model systems:

Identify genes that are causative mutations for birth defects

Identify genes that are causative mutations for genetic diseases (CF, Diabetes, cancer, etc)

Understand the biology of critical molecular pathways

Build genetic models of a disease to screen for novel compounds that might alleviate problem

Screen molecules for potential therapeutic value

Not all of these require the use of vertebrate animals. In some cases, the use of vertebrates isn't justified

"You've heard about some of these pet projects, they really don't make a whole lot of sense and sometimes [tax] dollars go to projects that have little or nothing to do with the public good,..... things like fruit fly research in Paris, France. I kid you not."

-Politician

"You've heard about some of these pet projects, they really don't make a whole lot of sense and sometimes [tax] dollars go to projects that have little or nothing to do with the public good,..... things like fruit fly research in Paris, France. I kid you not."

-Politician

This is a dangerous statement from an ignorant person!

Invertebrates offer cost effective alternatives to vertebrates species

Drosophila melanogaster (fruit fly)

Thomas Hunt Morgan - Nobel Prize for Genetic Studies in Drosophila

Drosophila melanogaster (fruit fly)

Thomas Hunt Morgan - Nobel Prize for Genetic Studies in Drosophila

Many molecular pathways associated with a particular disease are deeply conserved even when the phenotype at the end of those pathways does not resemble the disease.

Here is where invertebrate systems are incredibly useful!

Using forward genetics to screen for novel interacters with park and pink

park and pink1 are both genes that when mutated in us result in increased probability in developing parkinson's disease

Using forward genetics to screen for novel interacters with park and pink

Fernandes and Rao *Molecular Brain* 2011, **4**:17 http://www.molecularbrain.com/content/4/1/17 Table 7 Analysis of the interaction between a *Pink1* null mutation and cytological regions that modified both *park-RNAi* and *pink1-RNAi* wing phenotype

Deficiencies	Breakpoints	Effects of modification		
		Pink1-RNAi	park-RNAi	Pink1 ^{B9}
Enhancers				
Df(2L)net-PMF	21A1;21B7-8	++	++	n/d
Df(2L)BSC17	30C3-5;30F1	++	++	n/d
Df(2L)BSC50	30F5;31B1	+++	++++++	En
Df(2R)nap9	42A1-2;42E6-F1	++	+++++	En
Df(2R)cn9	42E;44C	++	++	En
Df(2R)BSC39	48C5-D1;48D5-E1	++	++++	En
Df(3R)BSC47	83B7-C1;83C6-D1	++	++	En
Df(3R)Tpl10	83C1-2;84B1-2	++	++	No
Suppressors				
Df(2L)BSC106	21B7;21C2	_		Su
Df(2L)dp-79b	22A2-3;22D5-E1			No
Df(2L)ed1	24A2;24D4	_		n/d
Df(2L)BSC109	25C4;25C8			Su
Df(2L)E110	25F3-26A1;26D3-11		_	n/d
Df(2L)BSC142	28C3;28D3			Su
Df(2L)BSC143	31B1;31D9	_	_	No
Df(2R)Exel7131	50E4;50F6			Su
Df(2R)BSC550	53C1;53C6		_	No
Df(2R)robl-c	54B17-C4;54C1-4	_	_	n/d
Df(2R)P34	55E2-4;56C1-11			Su
Df(3L)XD198	65A2;65E1		_	n/d
Df(3L)BSC33	65E10-F1;65F2-6	—	_	n/d
Df(3L)66C-G28	66B8-9;66C9-10			No
Df(3L)Scf-R6	66E1-6;66F1-6		_	Su
Df(3L)BSC10	69D4-5;69F5-7	—		Su
Df(3L)ME107	77F3;78C8-9	—	—	No
Df(3R)p-XT103	85A2;85C1-2			Su
Df(3R)sbd104	89B5;89C2-7		_	n/d
Df(3R)P115	89B7-8;89E7			Su
Df(3R)crb-F89-4	95D7-D11;95F15		_	No
Df(3R)Exel6202	96C9;96E2			No
Df(3R)Exel6203	96E2;96E6			Su

> 40 genetic regions that interact with both *pink1* and *park*

Potentially new places to look for mutations associated with Parkinson's disease

Potentially new therapeutic targets

"[tax] dollars go to projects that have little or nothing to do with the public good — things like fruit fly research in Paris, France. I kid you not."

-Politician

Sometimes just general curiosity in simple systems can build foundational knowledge necessary for rapid understanding of the molecular basis of a disease.

Synaptic proteins mostly discovered through work in invertebrates

Many of these genes are linked to neurological disorders

Frontiers in Cellular Neuroscience

www.frontiersin.org

Use of invertebrate systems can improve speed, cost, and reduce some ethical concerns

Plot of animal usage in research over time

Plot of animal usage in research over time

Ethical cost

Choosing a model system

- 1. is the animal's biology appropriate for the question
- 2. is there a better ethical choice for a model system
- 3. is the question being asked valuable enough to overcome the ethical and financial obstacles.

Humans **And Animals** Would Still **Be Dying From Rabies** If Pasteur Hadn't Experimented **With Dogs.**

Developing rabies vaccination was BIG deal

Testing cosmetics on animals doesn't really justify use of animal models for most people

Choosing a model system

- 1. is the animal's biology appropriate for the question
- 2. is there a better ethical choice for a model system
- 3. is the question being asked valuable enough to overcome the ethical and financial obstacles.

Identification of genes associated with human birth defects

Line	Phenotype	Mapped to chromosome	Gene
2	Exencephaly, craniofacial defects and omphalocele	15	?
11A	Exencephaly, cardiovascular defect, polydactyly	7	?
12A	Exencephaly	4	?
12D	Exencephaly	16	?
16C	Exencephaly, eye defect	8	?
20	Exencephaly, curly tail, fused digits kidney and lung defects	2	Laminin α5
22C	Exencephaly, small forebrain and eye defect	1	?
26	Exencephaly	12	?
27E	Exencephaly	12	?
34B	Exencephaly	1	?
Dey	Exencephaly, spina bifida, gastrulation and eye defect	3	Novel
C2	Exencephaly, spina bifida	7	?
F11	Exencephaly and vascular defects	3	Novel
Opm	Exencephaly and eye defect	12	Novel
Z4	Exencephaly	18	?
G2E	Exencephaly and eye defect	4	Novel
7A5	Exencephaly and small forebrain	5	?
31B	Exencephaly and small forebrain	2	
1B	Exencephaly, spina bifida, branchial arch and cardiovascular defect	6	?
F19	Exencephaly	?	?
33C	Exencephaly	19	?
12	Exencephaly	1	?
lilR3	Exencephaly, neural patterning	16	?
Kif3a	Exencephaly, neural patterning, left-right patterning	11	Kif3a
Opb2	Exencephaly, spina bifida, neural patterning, left-right patterning	1	Rab23
2Å	Exencephaly, neural patterning	11	?
Wimple	Exencephaly, neural patterning, left-right patterning	5	IFT172
Ling-ling	Exencephaly, neural patterning, left-right patterning	9	Novel
10	Exencephaly, neural patterning, eye defect and cardiovascular defect	10	?
Flexo	Exencephaly, neural patterning, left-right patterning	14	IFT88/polaris
Hennin	Exencephaly, neural patterning, left-right patterning	16	Novel
20D	Exencephaly, neural patterning, left-right patterning	?	?

 Table 1

 Mouse Lines with NTDs That Have Been Identified in the Sloan-Kettering Mouse Mutagenesis Screen

Choosing a model system

- 1. is the animal's biology appropriate for the question
- 2. is there a better ethical choice for a model system
- 3. is the question being asked valuable enough to overcome the ethical and financial obstacles.

Organoids are providing alternative approaches for designing genetic model systems.

organoid = Miniature organ-like structure made in cell culture

Organoid = Miniature organ-like structure made in cell culture

Organoids can be derived from adult somatic cells of individual patients

CRISPR/Cas9 gene editing of patient specific samples

"mature" kidney-like organoid

capsule = PODXL+ Podocytes wrapping and filtering blood

proximal tube = LTL+ epithelium

Distal tube = E-Cad+ epithelium

Adapted from Freedman et al., Nature Communications 2016

Differentiated organoids with Pkd (polycystic kidney disease) mutated form cysts

Polycystic kidney

1 in 500 to 1 in 1000 people world wide No cure - fatal Differentiated organoids with Pkd (polycystic kidney disease) mutated form cysts

Polycystic kidney

1 in 500 to 1 in 1000 people world wide No cure - fatal LTL/DNA

Control

t

Differentiated organoids with Pkd (polycystic kidney disease) mutated form cysts

Organoids can be used for drug screens

Organoids can be used for drug screens

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

Animals 2013, 3, 238-273; doi:10.3390/ani3010238

ISSN 2076-2615 www.mdpi.com/journal/animals

Review

Animal Experiments in Biomedical Research: A Historical Perspective

Nuno Henrique Franco

Institute for Molecular and Cell Biology, University of Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; E-Mail: nfranco@ibmc.up.pt; Tel.: +351-226-074-900

Received: 15 February 2013; in revised form: 11 March 2013 / Accepted: 11 March 2013 / Published: 19 March 2013

Outline

- Discuss the benefits of and how to choose a model system.
- Go through a case study of using a zebrafish model to understand how melanomas form

Testing the hypothesis that some cancers arise by reviving populations of embryonic stem cells

A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation

Charles K. Kaufman,^{1,2,3,4} Christian Mosimann,⁵ Zi Peng Fan,^{6,7} Song Yang,^{1,2} Andrew J. Thomas,¹ Julien Ablain,^{1,2,4} Justin L. Tan,¹ Rachel D. Fogley,¹ Ellen van Rooijen,^{1,2,4} Elliott J. Hagedorn,^{1,2,4} Christie Ciarlo,^{1,4} Richard M. White,⁸ Dominick A. Matos,⁹ Ann-Christin Puller,¹⁰ Cristina Santoriello,^{1,11} Eric C. Liao,^{2,4,12} Richard A. Young,^{6,13} Leonard I. Zon^{1,2,3,4,11}*

Science Jan 29th 2016

Neural crest cells

Neurons

Control experiment shows that crestin:EGFP transgene expressed where crestin mRNA is

Crestin Not expressed in adults

The authors next put their *crestin:EGFP* reporter into a p53 and BRAF mutant background and waited!

Tumo

crestin positive melanomas grow

Melanomas are derived in part from a reactivation of developmental programs in adults.

Profiling the melanomas demonstrated that this cancer is due to transforming adult cells back to an embryonic stem cell state

On a side note transgenic animals also make adorable pets

Not discussed today

Computational approaches as models

Take home

Model systems are necessary to understand humankind biology

Choosing the right model system requires weighing the benefit vs the ethical and financial costs

The answer isn't always going to be easy